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ON THE ROLES OF TASK MODEL VARIABLES

IN ASSESSMENT DESIGN1

Robert J. Mislevy, Linda S. Steinberg, and Russell G. Almond

Educational Testing Service, Princeton, New Jersey

ABSTRACT

Tasks are the most visible element in an educational assessment. Their purpose,
however, is to provide evidence about targets of inference that cannot be directly seen
at all: what examinees know and can do, more broadly conceived than can be observed
in the context of any particular set of tasks. This paper concerns issues in assessment
design that must be addressed for assessment tasks to serve this purpose effectively and
efficiently. The first part of the paper describes a conceptual framework for assessment
design, which includes models for tasks. Corresponding models appear for other aspects
of an assessment, in the form of a student model, evidence models, an assembly model, a
simulator/presentation model, and an interface/environment model. Coherent design
requires that these models be coordinated to serve the assessment's purpose. The second
part of the paper focuses attention on the task model. It discusses the several roles th a t
task model variables play to achieve the needed coordination in the design phase of an
assessment, and to structure task creation and inference in the operational phase.

1 This paper was presented at the conference "Generating items for cognitive tests: Theory and
practice," co-sponsored by Educational Testing Service and the United States Air Force Laboratory
and held at the Henry Chauncey Conference Center, Educational Testing Service, Princeton, NJ,
November 5-6, 1998.
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A construct-centered approach [to assessment design] would begin by asking what
complex of knowledge, skills, or other attribute should be assessed, presumably because
they are tied to explicit or implicit objectives of instruction or are otherwise valued by
society. Next, what behaviors or performances should reveal those constructs, and
what tasks or situations should elicit those behaviors? Thus, the nature of the construct
guides the selection or construction of relevant tasks as well as the rational
development of construct-based scoring criteria and rubrics. (Messick, 1992, p. 17)

INTRODUCTION

Task Design and Assessment Design

Tasks are properly a central focus of educational assessment, because they
produce the evidence upon which any subsequent feedback, decisions,
predictions, or placements are based. Historically, task design has been regarded
more as an art than a science. Today, however, pressures from several directions
impel us to consider more principled approaches to task design. The economies
of continuous large-scale computerized testing, for example, consume far more
test items than testing at limited occasions. Research from cognitive and
educational psychology is providing insights into the structure and acquisition of
knowledge, and offering clues about alternative ways that knowledge can be
evidenced. New technologies for simulating work environments beg the
question of how to make sense of the rich data they can produce.

An assessment designer in this new world will have to create tasks with a
credible argument for how students' behaviors constitute evidence about
targeted aspects of proficiency, and a clear structure for how the tasks will be
produced, presented, and evaluated. Task design is thus an element of
assessment design more broadly conceived. The present paper discusses task
design in this light. We borrow terminology and concepts from our evidence-
centered assessment design project, Portal, to frame the discussion. The ideas are
illustrated with examples from two assessments: The Graduate Record
Examination (GRE), as a prototypical large-scale standardized assessment, and
HYDRIVE, a coached practice system, as a representative product constructed
explicitly from a cognitive perspective and using simulation technologies. The
point is to see these two seemingly quite different assessments as instantiations
of the same underlying design elements.



Evidence-Centered Assessment Design

When the toolkit of standard testing practice lacks off-the-shelf procedures
to develop an assessment that takes advantage of new technologies or builds
around an alternative psychological theory, the designer must return to first
principles. To this end, assessment design can profitably be considered from the
perspective of evidentiary reasoning as it is developed in the work of David
Schum (1987, 1994). Schum draws upon themes and tools from centuries of
scholarly research, in fields that range from philosophy and jurisprudence to
statistics and expert systems. He argues that while every realm of human activity
has evolved its own specialized methods for evidentiary reasoning, common
underlying principles and structures can be identified to improve applied work
in all of them. These foundational principles of evidentiary reasoning are
especially useful for attacking new or novel problems, when standard solutions
and familiar methods fall short.

Our objective is to exploit this perspective, and the principles and tools
gained thereby, in the domain of educational assessment. We use the term
assessment broadly, to include not only large-scale standardized examinations
but classroom tests both formative and summative, coached practice systems and
intelligent tutoring systems, even conversations between a student and a human
tutor. All face the same essential problem: drawing inferences about what a
student knows, can do, or has accomplished, from limited observations of what a
student says or does. An evidentiary perspective helps sort out the relationships
among what we want to infer about examinees, what we can observe that will
provide evidence to back our inferences, and situations that enable us to evoke
that evidence.

Evidence-centered assessment design squares well with Messick's (1992)
construct-centered approach, epitomized in our introductory quote. The
difference is mainly a matter of emphasis. Messick accents the importance of
conceptualizing the target of inference, or just what it is about students the
assessment is meant to inform. As Yogi Berra said, "If you don't know where
you're going, you might end up someplace else." We stress the stages of acquiring
and reasoning from evidence, because the field lacks off-the-shelf methodologies
for structuring inference with the richer data and more complex student models



that are now beginning to appear in educational assessment. Either way, the key
ideas are these:

Identifying the aspects of skill and knowledge about which inferences are
desired. A given assessment system is meant to support inferences for some
purpose, whether it be course placement, diagnostic feedback, administrative
accountability, guidance for further instruction, licensing or admissions
decisions, or some combination of these. In order to support a given purpose,
how should we characterize examinees' knowledgen

Identifying the relationships between targeted knowledge and behaviors in
situations that call for their use. What are the essential characteristics of behavior
or performance that demonstrate the knowledge and skills in which we are
interested? What do we see in the real world that seems to distinguish people at
different levels of proficiency in these respects?

Identifying features of situations that can evoke behavior that provides
evidence about the targeted knowledge. What kinds of tasks or situations can
elicit the behaviors or performances that demonstrate proficiency? The way we
construe knowledge and what we consider evidence about it should guide how
we construct tasks and evaluate outcomes.

The objective of the Portal project is to create a conceptual framework and
supporting software tools for designing assessments in this light. The project has
three distinguishable aspects: (a) An evidence-centered perspective o n
assessment design; (b) object definitions and data structures for assessment
elements and their interrelationships; and (c) integrated software tools to support
design and implementation. In this paper we draw upon the perspective and a
high-level description of the central objects and interrelationships. In particular
we will explore aspects of the Portal task model. We draw out connections
between features of tasks and various assessment functions including task
construction, inference, reporting, and validity argumentation - all of which can
be described in terms of the roles of task model variables.

2 We use the term "knowledge" broadly, to encompass its declarative, strategic, and procedural
aspects, and recognize that a person's knowledge is intertwined with social, cultural, and
technological contexts. This latter understanding is central to argument from evidence to
implication, and as such, equally critical to assessment design and validity investigations.



The following section sets the stage for this discussion by laying out the
essential structure of the Portal conceptual assessment framework. Following
that, we consider the various and interconnected roles of task model variables.

A MODEL FOR EVIDENCE-CENTERED ASSESSMENT DESIGN

Overview of the Basic Models

.-

0

0

Figure 1 is a schematic representation of the six highest-level objects, or
models, in a Portal conceptual assessment framework (CAF). These models must
be present, and must be coordinated, to achieve a coherent assessment. W e
would claim that these basic models are present, at least implicitly, and
coordinated, at least functionally, in existing assessments that have evolved to
serve well some inferential function. Making this structure explicit helps an
assessment designer organize the issues that must be addressed in creating a new
assessment. Retrospectively, it helps clarify how pervasive design issues have
been managed in successful assessments in the past, or overlooked in failures.

These are the basic models:

The Student Model contains variables representing the aspects of
proficiency that are the targets of inference in the assessment, and it is where we
manage our uncertain knowledge about these variables. Student model variables
thus concern characteristics of students.

The Evidence Model describes how to extract the key items of evidence
(values of observable variables) from what a student says or does in the context
of a task (the work product), and models the relationship of these observable
variables to student-model variables. Observable variables concern characteristics
of performances.

The Task Model describes the features of a task that need to be specified
when a task is created. We will use the term task in the sense proposed by
Haertel and Wiley (1993), to refer to a "goal-directed human activity to be
pursued in a specified manner, context, or circumstance." A task can thus
include an open-ended problem in a computerized simulation, a long-term
project such as a term paper, an language-proficiency interview about an
examinee's family, or a familiar multiple-choice or short-answer question. W e
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0

will reserve the term "item" for these latter cases. Task model variables concern
characteristics of the situations by which evidence is obtained.

The Assembly Model describes the mixture of tasks that go into an
operational assessment, or the procedure for determining tasks dynamically if
appropriate.

The Simulator Model describes the environment in which a particular task
will run and the capabilities that are required for this to happen. The term could
refer literally to a computerized simulation environment, but more generally
congtrued can refer to the familiar, non-interactive, presentation of items in a
paper-and-pencil (P&P) examination or to the procedure through which a
human interlocutor conducts an interview to gather evidence about an
examinee's language proficiencies.

The Environment Model describes the overall assessment environment.
This includes specifications for whatever is needed to carry out the assessment,
such as physical requirements, tools for examinees, computer hardware and
software, timing requirements, security procedures, and so on.

In general, a CAF will have one operational student model, assembly
model, and environment model. It may, however, have many different
operational evidence, task, and simulator models.

0 The Student Model

The student model directly answers Messick's question, "What complex of
knowledge, skills, or other attributes should be assessed?" Student-model
variables describe characteristics of examinees (knowledge, skills, abilities) about
which the user of the assessment wants to make inferences (decisions, reports,
diagnostic feedback, advice).

Configurations of values of student-model variables are meant to
approximate selected aspects of the countless skill and knowledge configurations
of real students, from some perspective about how to think about skill and
knowledge. This is how we want to talk about the student, although we can't
observe the values directly. There could be one or hundreds of variables in a
student model. They could be qualitative or numerical. They might concern
tendencies in behavior, use of strategies, or ability to apply the big ideas in a



domain. The factors that determine the number and the nature of the student
model variables in a particular application are the conception of competence in
the domain and the intended use of the assessment.3 A test used only for
selection, for example, might have just one student-model variable, overall
proficiency in the domain of tasks, while a diagnostic test for the same domain
would have more student-model variables, defined at a finer grain-size and
keyed to instructional options.

Defining student model variables specifies our target(s) of inference. At the
beginning of a given student's assessment, we know little about the values of
this student's variables and wish to sharpen our knowledge. We move from a
state of greater uncertainty to lesser uncertainty about these unknown values by
making observations which provide evidence about them, and integrating this
new information into our beliefs.

In Portal, we use Bayesian inference networks, or Bayes nets for short
(Jensen, 1996), to manage our uncertain knowledge about the student. The
student model is a fragment of a Bayes net, the student model variables being the
variables in the network. A joint probability distribution for these variables at a

given point in time represents our knowledge about the values of the student-
model variables corresponding to a particular examinee. We update this
distribution when we make an observation. (We'll say a bit more about how this
is done in the following section on Evidence Models, but see Mislevy & Gitomer,
1996, for a more complete discussion.) Belief about a given person's values before
an assessment could be based on background information or prior experience
with that examinee. Uninformative distributions would usually be used as the
prior distribution for all examinees in a high-stakes test, though, because
considerations of fairness demand that only information from the assessment at
hand enter into the summary of their performances.

Example 1. Figure 2 graphically depicts the student model that underlies
most familiar assessments: a single variable, typically denoted e, that
represents proficiency in a specified domain of tasks. We use as examples
the paper and pencil (P&P) and the computer adaptive (CAT) versions of

3 As we shall see, task model variables play a central role in defining student model variables
operationally. The idea is for this operational definition to be the result of purposeful planning,
rather than an coincidental outcome of task creation.

13



Figure 2. The student model in the GRE Verbal measure
contains just one variable: the MT ability parameter 0,
which represents the tendency to make correct responses
in the mix of items presented in a GRE-V.

the Graduate Record Examination (GRE), which consist of domains of
items for Verbal, Quantitative, and Analytic reasoning skills. Our
knowledge before the test starts is expressed as an uninformative prior
distribution. We will update it in accordance with behaviors we see the
examinee make in various situations we have structured; that is, when
we see her responses to some GRE Verbal test items.4

Example 2. Figure 3 is a more complex example of a student model, taken
from Gitomer and Mislevy (1996). It is based on HYDRIVE (Steinberg &
Gitomer, 1996), a coached practice system that ETS built to help Air Force
trainees learn to troubleshoot the hydraulic systems of the F15 aircraft.
Students worked their way through problems in a computer simulated
environment much as they would on the flight line. The variables of the
student model were used to capture regularities in the student's behavior,
and their tendencies to use identified expert troubleshooting strategies.

This student model is a fragment of a Bayes net, and these nodes are the
student model variables. Student-model variables were derived in light
of cognitive task analyses (CTA) of the job, the purpose of the HYDRIVE
system, and the instructional approach of the system. The CTA showed

4 The simplicity of this student model is deceptive, by the way. It takes a great deal of hard work
to make such a simple model work well. In order to be appropriate for capturing and expressing
information from potentially thousands of different items, some very sophisticated
interrelationships are posited. Much care is taken in just how and which are to be observed for a
given examinee; empirical evidence is be carefully checked to avoid inferential errors that lead to
certain kinds of unfair inferences. In the second half of the paper we will mention some of the
considerations that are needed to ensure this simple model will suffice in the GRE.
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Figure 3. The student model in the HYDRIVE example is a more
complex Bayes net.

that expert troubleshooting requires a conjunction of declarative,
strategic, and procedural knowledge, so the student-model variables
reflected key aspects of proficiency along these lines. Since the main
purpose of HYDRIVE is instruction, the student model variables conform
to a philosophy of instruction in the domain in this case,
troubleshooting a hierarchical physical system. The student model
variables are defined at the grain-size at which instructional decisions are
made - in this case, infrequent, high-level review sessions for aspects of
system functionalities and troubleshooting strategies.



As discussed in the next section, we model values of observable variables as
probabilistic functions of student model variables. The structure and strength of
these relationships, expressed as conditional probability distributions, gives the
direction and weight of evidence about student-model variables we obtain when
we learn the values of observable variables. We update our belief about the
person's student-model variables from what we see her do in situations that we
have structured and modeled in this manner. The updated distribution of
student-model variables for a given person at a given point in time can be used
to trigger decisions to such as to stop testing, shift focus, offer feedback, or make a
placement decision.

Evidence Models

Evidence models address Messick's second question, "What behaviors or
performances should reveal [the targeted] constructs," and the natural follow-up
question, "What is the connection between those behaviors and the student
model variables?"

There are actually two parts of the evidence model. First, Evidence Rules
extract the salient features of whatever the student has produced in the task
situation, or the Work Product, and ascertain values of Observable Variables
(Figure 4). This might be simple or complex, it might be done automatically or
through human judgment.

Example 1 (continued). This is an evidence rule in the GRE P&P test:

IF the area on the mark-sense answer sheet corresponding to the correct
answer reflects more light by 10% than each area corresponding to the
distractors,

THEN the item response IS correct,

ELSE the item response IS NOT correct.

Example 2 (continued). Here's the form evidence rules take in HYDRIVE.
The work product is the list of actions a student takes in the course of
working through the problem. As a student is working through a
problem, short sequences of actions are grouped into clusters that each
provide an item of information about the state of the system. These
clusters are then evaluated in terms of their effect on the problem space.



Observable Variables

Evidence Rules

Work
Product

Figure 4. The Evidence Rules in the evidence model extract the salient
features of the work product a student produces, and summarize them in
terms of values for observable variables.

This rule sets the value for an observable variable that says whether or
not he has taken actions consistent with space-splitting the power path
(an expert strategy):

IF an active path which includes the failure has not been created and the
student creates an active path which does not include the failure and the
edges removed _from the problem area are of one power class,

THEN the student strategy IS splitting the power path,

ELSE the student strategy IS NOT splitting the power path.

A given work product may give rise to several observable variables. A
single essay may be evaluated in terms of multiple aspects of language use, for
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example, or a science investigation may require several interdependent steps that
each contribute to a composite work product. The values of a set of observable
variables in such cases is a vector-valued description of the state of the
performance.

The statistical component expresses how the observable variables depend, in
probability, on student model variables (Figure 5). At the point in time at which
a student produces a work product, the student is posited to be in a state
characterized by some unknown values of student-model variables. This state
gives rise to probabilities for states of observable variables, which can be observed
and as such constitute evidence about the student's state (see Haertel & Wiley,
1993, on the importance of the distinction between states of knowledge and states
of performance). In Portal, we also model these relationships as Bayes-net
fragments. They can be attached to the student model Bayes-net fragment to
absorb the evidence. The directed edges from the student model variables to the
observable variables represent conditional probability distributions.

Example 1 (continued). Figure 6 shows the statistical portion of the
evidence model used in the GRE CAT, an item response theory (IRT)
model. On the left is a Bayesian inference network for updating the
probability distribution of the student's proficiency parameter in
accordance with observing her response to a particular Item j. On the
right is a library of all items that could be given, along with the
structures necessary to dock any one with the student model in order to
incorporate the evidence its response contributes. In particular,
previously estimated item parameters, which define the conditional
probability distribution of item responses, are available. The information
stored along with these fragments also informs how to select the next
item so the next response will be optimally informative while retaining
the balance of kinds of items that are presented and the aspects of skill
that are tapped.

Example 2 (continued). Figure 7 is the statistical part of the evidence
model in the HYDRIVE example. On the left is a more complex Bayes net,
in which a fragment containing two observed variables is docked with
the student model, connected to the student-model variables that we
posit drive their response probabilities. The structure of these fragments
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depends on our understanding of how mechanics troubleshoot this
system and how the tasks are constructed. For example, a student does
space-splitting consistently only if he is (a) familiar with space-splitting as
a strategic technique; (b) sufficiently familiar with the system to apply the
strategy; and (c) familiar with the tests and gauges he must use to carry
out the strategy in a given situation. (Note that which evidence-model
fragments are used in HYDRIVE depends on the situations the student
works himself into, while in the GRE-CAT the evidence models are
determined by the items we decide to administer.) When we observe a
student's actions in a situation like this, we determine the values of
observable variables using the evaluation rules, then in turn update our
belief about the student model variables through the statistical model.
The student model variables synthesize the information across many
situations.

If, as in the GRE, the evaluation rules just extract a single observed variable
from each task that summarizes how well they've done on that task, and what
we care about is a student's tendency to do well on tasks like these, then a
familiar IRT model or a classical test theory model is what we use in the
statistical portion of the evidence model. In more complex situations, statistical
models from psychometrics can play crucial roles here as building blocks IRT

models, rating scale models, latent class models, factor models, hierarchical
models, and so on. These models evolved to address certain recurring issues in
reasoning about students know and can do, given what we see them do in a
limited number of circumscribed situations, often captured as judgments of
different people who need not agree.

As mentioned earlier, there can be multiple evidence models in a CAF. This
is because different configurations of kinds of evidence and interrelationships
with student-model variables might be required. Reasons for having more than
one evidence model include (a) different tasks produce different kinds of work
products, which need distinct sets of evidence rules; (b) different statistical
models are needed to relate observed variables to student model variables;
(c) different tasks and associated evidence rules produce different observable
variables; (d) different subsets of student-model variables in a multivariate
problem are posited to drive probabilities of different observable variables; and
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(e) different values of task model variables qualitatively change the focus of
evidence.

An example of an assessment that needs only one evidence model is one
that uses the same single-proficiency IRT model for all items, and does not
model the item parameters in terms of different task variables for different tasks.
A first example of an assessment that uses a single-proficiency IRT model but
needs more than one evidence model is one that has a mix of multiple-choice
items and performance tasks rated on a partial-credit scale. A second example is
an assessment in which different item features are used to model the parameters
of different types of items.

To be used operationally, an evidence model must be compatible with both
the student model and a task model. We have seen that an evidence model is
compatible with a student model if all the student-model variables that
determine the observed variables in the evidence model are present in the
student model. A necessary condition for an evidence model to be compatible
with a task model is that they share the same work-product specifications. That
is, what the student produces in the task situation and what the evidence rules
interrogate must be the same kind of thing.

A further condition is agreement on specified ranges of a subset of task
model variables called the scope of the evidence model (further defined below).
A given evidence model may be used with more than one task model, if the
same scope, evidence rules, and structural relationships between observable
variables and student-model variables are appropriate for all the task models.
Similarly, more than one evidence model could be conformable with a given
task model, if all the evidence models addressed the same work product and had
a compatible scopes. They could apply different evaluation rules to the work
product (e.g., different scoring rubrics), or they could model observable
performance as a function of variables from a different student model, as
appropriate to a different educational purpose (e.g., a finer grained student model
when using the item for coached practice than when using it for selection).

Task Models

a

Task models address Messick's third question, "What tasks or situations
should elicit those behaviors [that provide evidence about the targeted

r2 6
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knowledge]?" A task model provides a framework for describing the situations
in which examinees act (Figure 8). In particular, this includes specifications for
the stimulus material, conditions, and affordances, or the environment in which
the student will say, do, or produce something. It includes rules for determining
the values of task-model variables for particular tasks. And it also includes
specifications for the work product, or the form in which what the student says,
does, or produces will be captured. Altogether, task-model variables describe
features of tasks that encompass task construction, management, and
presentation. We will discuss the several roles of task model variables more fully
in the next section.

Assigning specific values to task model variables, and providing materials
that suit the specifications there given, produces a particular task. Assigning
values or materials to only a subset of them produces a task shell. Multiple task
models are possible in a given assessment. They may be employed to provide
evidence in different forms, use different representational formats, or focus
evidence on different aspects of proficiency. Again we postpone to the next
section the role of task model variables in making these determinations.

A task thus describes particular circumstances meant to provide the
examinee an opportunity to take some specific actions that will produce
information about what they know or can do more generally. The task itself does
not describe what we should attend to in the resulting performance or how she
should evaluate what we see. This is determined by the evidence model,
as described above, which needs to match on the work product it expects and o n
features specified in the scope of the task and evidence models. Distinct and
possibly quite different evidence rules could be applied to the same work product
from a given task; distinct and possibly quite different student models, befitting
different purposes or conceptualizations of proficiency, could be informed by data
from a given task.

Example 1 (continued). A task model in the GRE describes a class of test
items. There is some correspondence between task models and GRE
"item types" (e.g., sentence completion, passage comprehension,
quantitative comparison). Different item types will generally require
different task models, because different sets of variables needed to
describe their distinct kinds of stimulus materials and presentation
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formats, and different features may be important in modeling item
parameters or controlling item selection. Different task models will be
required for P&P and CAT use of what is the same item from the
perspective of content, because specifications for presenting and
managing the item are wholly different in the two modes.

Example 2 (continued). A task model in HYDRIVE concerns the initial
state of all the components in the simulation of the relevant aircraft
system, video and audio clips required to present the problem and may be
needed to illustrate states and actions of the aircraft during solution, and,
because HYDRIVE is a coached practice system, links to an instructional
module (which itself will be described in terms essentially the same as
those of a task model) which can be activated by prespecified actions or
states of the student model.

We will return to these task-model examples later, to say more about the
variables they contain and their relationships with the other models in the
assessment.

The Assembly Model

The models described above specify a domain of items an examinee might
be presented, procedures for evaluating what is then observed, and machinery
for updating beliefs about the values of the student model variables. Assembly
specifications constrain the mix of tasks that constitute a given examinee's
assessment. We observe neither the whole of the task domain nor an
uncontrolled sample, but a composite purposefully assembled to targets for the
mix of features of tasks the examinee receives. In IRT testing, optimal test
assembly under multiple constraints has been a topic of much interest recently,
both for fixed tests and CAT (Berger & Veerkamp, 1996). One can impose
constraints that concern statistical characteristics of items, in order to increase
measurement precision, or that concern non-statistical considerations such as
content, format, timing, cross-item dependencies, and so on. Task selection can
thus proceed with respect to constraints expressed in terms of task model
variables that lie outside the statistical model proper.
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The Simulator Model

The term simulator model refers to the capabilities that are needed to
construct the environment and the situation in which the examinee will act, and
to manage the interaction as may be required.

Example 1 (continued). In the GRE CAT, the simulator model is the
description of requirements for the software that manages the
presentation of items and captures examinees' responses. When a
particular item is selected to administer to an examinee (as determined by
the assembly algorithm, informed by the current state of the student
model and the identification of items presented thus far), this software
must render the stimulus material on the screen, provide for and
respond to examinee actions such as scrolling through a reading passage,
inform the examinee of time usage, and log the selected response choice.
The simulator model contains the descriptions and specifications for all
of these functionalities, again detailed to the extent that an external
contractor could build a system that provided them.

Example 2 (continued). The HYDRIVE system contains a simulation of
the hydraulic systems of the F15. It consists of objects that correspond to
the mechanical, electrical, and hydraulic components of those systems,
and can simulate the outcomes of troubleshooting actions in correctly
functioning and variously malfunctioning states. The state of the system
is updated as an examinee takes actions such as setting switches,
supplying auxiliary power, replacing components, and manipulating
controls. In addition, a component properly included in the simulation
system tracks the implications of the student's sequence of
troubleshooting actions on the so-called active path toward solution. In
this way, the same action can be evaluated as space-splitting in one
situation but redundant in another. Again, the simulator model for
HYDRIVE contains the descriptions and specifications for these
functionalities at the level appropriate to hand over to an external
contractor.
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ROLES OF TASK MODEL VARIABLES

In the preceding section, we described task model variables as a language for
characterizing features of tasks and specifying how the interaction between the
examinee and the task is managed. But what kinds of task model variables are
needed, and what roles do they play? This section discusses how task model
variables can play several roles in the assessment process outlined above.

Task Construction

An fundamental tenet of the evidenced-centered approach to assessment
design (and of Messick's construct-centered approach as well) is that the
characteristics of tasks are determined by the nature of the behaviors they must
produce, to constitute evidence for the targeted aspects of proficiency. This
perspective stands contrary to a task-centered approach, under which the primary
emphasis is on creating tasks, with the target of inference defined only implicitly
as the tendency to well on those tasks. Valuable insights inform task design
under this latter approach, to be sure. But the flow of the design rationale from
construct to evidence to task makes our rationale explicit from the start easier to
communicate, easier to modify, and better suited to principled generation of
tasks. It is this last connection, depicted in Figure 9, we now consider.

This evidentiary perspective on assessment design also conforms nicely
with a cognitive perspective on knowledge and performance. A cognitive task
analysis in a given domain seeks to shed light on (a) essential features of the
situations; (b) internal representations of situations; (c) the relationship between
problem-solving behavior and internal representation; (d) how the problems are
solved; and (e) what makes problems hard (Newell & Simon, 1972). Designing an
assessment from cognitive principles, therefore, focuses on the knowledge
people use to carry out valued tasks in a domain at large, and abstracts the
characteristics of those tasks that provoke valued aspects of that knowledge (e.g.,
Embretson, 1998). Those characteristics, then, become formalized as task model
variables. Irvine and his colleagues (e.g., Collis et al., 1995; Dennis et al., 1995) use
the term radical to describe those features which drive item difficulty for
theoretically relevant reasons, and incidentals to describe those which do not. A
model for creating tasks would define variables of both types. When tasks are
generated automatically, values of these variables are instantiated in a
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predefined schema. The argument for the relevance of behavior in the resulting
task situation is largely in place at this point, only to be verified empirical
validation. Early work by Hive ly et al. (1968) illustrates schema-based item
construction in this spirit. When tasks are created individually, values of some
these task model variables are targeted when the test developer seeks stimulus
material or are set after material is found and the rest of the task is written.

Example 1 (continued). Historically, GRE items have been essentially
hand-crafted. Test developers write them to meet broad specifications and
to take the form of established item types, but apply their own insights
and intuitions as to sources of difficulty and regions of knowledge that
will be tapped. Some researchers, such as Chaffin and Peirce (1988),
undertook studies simply to make more explicit the definition and the
structure of the domains of tasks that seemed to underlie the
assessments. And beginning with the pioneering work of Jack Carroll
(1976), other researchers launched investigations into the cognition that
gives rise to performance on traditional item types, gaining
psychologically-grounded insights into the features that make them
difficult. These strands of research work backwards from the
procedurally-defined assemblages of items that constitute a GRE to a
principled explication of the domain of tasks that constitute evidence
about "what the GRE measures," and a cognitive understanding of the
skills and knowledge that seem to be required. Such an understanding
provides a foundation for working forward, and indeed researchers are
currently exploring how generative schemas, their parameters defined in
terms of task-model variables, can be used to create items for the GRE
(e.g., Enright & Sheehan, 1998).

Example 2 (continued). Given the aircraft simulator in HYDRIVE, one
creates a task by specifying which components are faulty, and in which
ways, among the possibilities the simulator .can -accommodate. The
relevant task model variables thus indicate initial states for all the
components.5 When video and audio clips accompany such a task,

5 Specifying these states was not as difficult for a task creator as it might first seem, since the
normal conditions for all components were defaults. Only exception conditions had to be indicated.



additional task model variables describe technical specifications for
running them and substantive characteristics relevant to the knowledge
required to solve the problem (e.g., is there obvious cue to the problem?
... an irrelevant cue in the introductory clip? ... multiple cues which only
together provide information about the area of the fault?).

Focusing Evidence

The proficiencies defined in any assessment have many facets, and the
features of tasks can be controlled to focus the evidence on some of these facets
rather than others. The scope of an evidence model is a list of task-model
variables and associated ranges of values that must be consistent with
corresponding values of those variables in a task, for that evidence model to be
used to extract information from the task (Figure 10).

Example 2 (continued). An evidence model constructed to extract
evidence about space-splitting usage must, perforce, be used in a task
situation in which it is possible to carry out space-splitting. Its scope
would include the task model variable "Space-splitting possible?"
constrained to the value "Yes." Only a task model with a scope that
contains "Space-splitting possible?" constrained to the value "Yes" is
compatible with an evidence model that can update a "space-splitting
knowledge" student-model variable.

The student model in the HYDRIVE example includes variables for
knowledge about the subsystems of the hydraulics system, including the flaps
and the canopy, and for knowledge about using troubleshooting strategies,
including space-splitting and serial elimination. The preceding example shows
how the variables on the scope of the evidence and task models serve to
focus the evidentiary spotlight of tasks onto different variables within a complex
student model. But the same HYDRIVE tasks could be used for in an end-of-
course test with only a single overall proficiency variable in the student model.
The same scope designations would still be needed, however, to ensure that an
appropriate set of evidence rules was applied to extract evidence from the work
product produced in response to a task. In this latter case, the variables used in
the scope task serve to focus evidence-gathering on a particular region of a more
broadly-construed proficiency.
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Assessment Assembly

Once a domain of items has been determined, test assembly specifications
control the mix of tasks that constitute a given examinee's test. Constraints can
be imposed with respect to statistical characteristics of tasks, such as the expected
information it offers for various student model variables, and also with respect
to non-measurement considerations such as content, format, timing, cross-item
dependencies, and so on. In assessments that are adaptive, constraints can be
dynamic as well as static. These constraints are defined in terms of task model
variables, so task-model variables must be defined to characterize each task in
terms of all the features needed to assembling assessments (Figure 11). The set of
constraints, in conjunction with the specification of a domain of tasks, rules of
evidence, and evidence-model Bayes-net fragments, constitute an operational
:definition of the student-model variables in an assessment - that is, they
implicitly define "what the assessment measures." (A key question for the
assessment designer, then, is whether this implicit functional definition of
student model variables accords with the explicit conceptual definitions meant to
drive the design.)

Example 1 (continued). In addition to information-maximizing
constraints based on items' IRT parameters, the assembly specifications
for the GRE CAT contain blocking and overlap constraints. Taken
together, they ensure that the collection of items administered to all
examinees will have similar balances of content and format, and be
reasonably well modeled by the single-proficiency IRT model.

Blocking constraints ensure that even though different examinees are
administered different items, usually at different levels of difficulty, they
nevertheless get similar mixes of content, format, modalities, skill
demands, and so on. Stocking and Swanson (1993) list 41 constraints
used in a prototype for the GRE CAT, including, for example, the
constraint that one or two aesthetic/philosophical topics be included in
the Antonym subsection. Since it is not generally possible to satisfy all
constraints simultaneously, these authors employed integer
programming methods to optimize item selection, with item-variable
blocking constraints in addition to IRT-based information-maximizing
constraints.
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Overlap constraints concern the innumerable idiosyncratic features of
items that cannot be exhaustively coded and catalogued. Sets of items
that must not appear in the same test as one another are specified; they
may share incidental features, give away answers to each other, or test
the same concept. A task-model variable for GRE items, therefore, is the
enemies list: for a particular item, this is the set of items in the same
pool which cannot concomitantly appear on an examinee's test. 'Overlap
constraints evolved through substantive lines, from the intuition that
using too-similar items reduces information about examinees. Although
each item is acceptable in its own right, their joint appearance causes
"double counting" of evidence when a conditional-independence IRT
model is used (Schum, 1994, p. 129).

IRT-CAT adapts to changing states of knowledge about the student-model
variable, but the target of inference is always the same: "What is e?" It uses
information formulas and task-based blocking and overlap constraints to select
items in this context. Generalizations of these kinds of item selection procedures
are required for more complex models, in which different subsets of a larger set
of student model variables may shift into and out of attention. Research in the
.psychometric literature that leads in this direction includes the work on item
,selection and test assembly in the context of multivariate IRT models (van der
Linden, 1997; Segall, 1996) and latent class models (Macready & Dayton, 1989).

Mediating the Relationship Between Performance and

Student-Model Variables

We considered above the importance of cognitively or empirically relevant
features of tasks during task construction, and the role of task-model variables in
structuring this process. The reason is that these features characterize which
aspects of the targeted proficiencies are stressed, in which ways, and to what
extent, by situations that exhibit those features. Some of these same variables can
play a role in the statistical part of the evidence model for the same reason. The
conditional probability distributions of the values of observable variables, given
the relevant student-model variables, can be modeled as functions of these task
model variables in the evidence-model Bayes-net fragments (Figure 12).

4 2
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In assessments that use WI to model conditional probabilities of observable
variables given a single student-model variable, this amounts to modeling item
parameters as functions of task-model variables (e.g., Fischer, 1973; Mislevy,
Sheehan, & Wingersky, 1993). The practical advantage of doing this is reducing
the number of pretest examinees that are needed to obtain satisfactory estimates
of item parameters assembling tests and for drawing inferences about examinees.
This can be done by characterizing items post hoc, but a more powerful approach
is model conditional probabilities in terms of (perhaps a subset of) the same
features that theory posits to be important and around which items are
constructed (Bejar, 1990). Embretson (1998) illustrates how assessment design,
task construction, and statistical modeling can thus be unified under a cognitive
perspective. Collis et al. (1995) use the approach with computer-generated tasks,
with the objective of creating items with operating characteristics sufficiently
predictable to be used without any pretesting at all.

In assessments with a single student-model variable and conditionally
independent observations, modeling item difficulty as a function of task model
variables is closely related to the desired end of modeling conditional
probabilities. Task model variables typically show similar relationships with IRT
difficulty parameters and classical indices of difficulty such as percent-correct in
the target population. Further, experience suggests that IRT difficulty parameters
are at once easiest to model and most important in subsequent inference
(Mislevy et al., op cit.).

Example 1 (continued). Many studies have been carried out on the
features of GRE items that appear to account for their difficulty. Chalifour
and Powers (1989) accounted for 62 percent of item difficulty variation
and 46 percent of item biserial correlation variation among GRE
analytical reasoning items with seven predictors, including the number
of rules presented in a puzzle and the number of rules actually required
to solve it. Scheuneman, Gerritz, and Embretson (1989) were able to
account for about 65 percent of the variance in item difficulties in the
GRE Psychology Achievement Test with variables built around
readability, semantic content, cognitive demand, and knowledge demand.
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In assessments that have more than one student model variable, though,
simply modeling item difficulty in terms of task model variables is not sufficient.
Two tasks can be equally difficult in the sense of percents: correct in the target
population, but for different reasons. If those reasons reflect differential stress o n
various student model variables posited to determine performance of the task,
then a more complicated structure is needed to properly disambiguate the
evidence about those student model variables.

Example 3. The current Test of English as a Foreign Language (TOEFL)
measures Reading, Listening, and Structure in three separate single-
proficiency tests with conditionally independent items in each. The
TOEFL 2000 development project is investigating more complex tasks
that demand the use of skills across these formally separate areas.
Consider a task model for a class of tasks in which an examinee must first
read a passage of prose, then construct a written response to some
directive based on the passage. For simplicity, suppose that only a single
aspect of performance is extracted, a holistic rating of whether or not the
response is both substantively appropriate and satisfactorily constructed.
Finally, suppose that student model variables for Reading and Writing
are posited to be drive the probabilities of this observable variable. Clearly
features of both reading load and writing demand will influence the
difficulty of a task in this class, in the sense of, say, proportion of
satisfactory performances. But one task with a complex argument
requiring a simple phase for a response, and a second task with a simple
passage but demanding a formal letter for a response, could be equivalent
in this regard. The conditional probabilities for a satisfactory response to
the first task be low until reading skill is fairly high, but insensitive to
writing skill once a low threshold is met. The conditional probabilities for
a satisfactory response to the second task are a mirror image, low until a
fairly high level of writing skill is present but insensitive to reading skill
once a threshold is met.

Characterizing Proficiency

What does a value of a student-model variable mean? One way to answer
this is by describing typical performance on various tasks in the domain from
students at that level. Another role for task-model variables, then, is to link
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values of student model variables to expected observable behaviors (Figure 13).
This role is a corollary of the previous one, which involved modeling
conditional probabilities in evidence models in terms of task model variables.
The essential idea is this: Knowing the values of these task model variables for a
given real or hypothetical task, one can calculate expected values of the
conditional probability distributions for its observable variables in the Bayes-net
fragment of a conformable evidence model. One can then calculate the
corresponding probability distributions for observables for any specified values of
student model variables.

Example 1 (continued). The three-parameter IRT model is used with the
GRE CAT. If we know an item's parameters, we can calculate the
probability of a correct response from a student with any given e. W e
can further give meaning to a value of e by describing the kinds of items
a student at that level is likely to succeed with, and those he is not. To
the extent that item features account for item parameters, then, we can
describe the student's proficiency in terms of substantive task
characteristics and/or cognitively relevant skills. For example, Enright,
Morely, and Sheehan (in press) explained about 90 percent of the
variance in item difficulty parameters in a constructed set of GRE
Quantitative word problems with the factors (a) problem-type, (b)

complexity, and (c) number vs. variable. A student with e = -1 would
have about 2/3 chances of correctly answering a simple "Total cost = unit
cost x units" problem presented in terms of actual numbers; a student
with 9 = 1 would have a 2/3 chance of success with a more complex
"distance = rate x time" problem presented in terms of actual numbers;
and a student with 9 = 2.5 would have about 2/3 chance with a complex
cost or distance problem presented in terms of variables.

Example 2 (continued). The probability distribution of any observable
variable in the HYDRIVE example depends on at least three student-
model variables: one for knowledge of the subsystem involved,
facility with the expert-level troubleshooting strategy that can be applied,
and familiarity with the tests and procedures that apply to the situation.
Behavior depends on all three, so how can the idea of behaviorally
anchoring be applied? One approach is to identify a level of single
student-model variable of particular interest and a task in which it is
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anchoring be applied? One approach is to identify a level of single
student-model variable of particular interest and a task in which it is
required, then calculate expected response probabilities for the designated
level of this special student-model variable averaging over the
conditional distributions of all the other student-model variables. This is
a weak prediction in HYDRIVE, though, since performance depends
heavily on the other student-model variables. Even if one is very good at
space-splitting, he is unlikely to do it on a subsystem he is not familiar
with. An alternative is to give conditional interpretations: Being high o n
space-splitting means a 75 percent chance of applying this expert strategy
if the examinee is familiar with the subsystem. A second alternative is to
provide descriptions of expected behavior for vectors of student-model
variables. Conditional probabilities specify expectations more tightly, and
the results are meaningful to the extent that the selected vectors are
interpretable profiles e.g., typical new student, or typical expert on a
different aircraft.

41

CONCLUSION 0

Standard procedures for designing and carrying out assessments have
worked satisfactorily for the assessments we have all become familiar with over
the past half century. Their limits are sorely tested today. The field faces demands
for more complex inferences about students, concerning finer-grained and
interrelated aspects of knowledge and conditions under which this knowledge
can be to bear. Advances in technology can provide far richer samples of
performances, in increasingly realistic and interactive settings; how can we make
sense of this complex data? And even with familiar assessments, cost pressures
from continuous testing and social pressures for validity arguments demand
more principled assessment designs and operations.

Using terms and concepts from the Portal project, we have outlined a design
framework to attack these challenges. We believe that an understanding of the
elements and the interrelationships that are needed for evidentiary reasoning i n
the assessment context provides a foundation for principled task design. W e
have explored the roles that variables in task models play in constructing tasks,
focusing evidence, assembling assessments, characterizing proficiency, and



mediating the relationship between task performance and student proficiency.
Even with such a framework, successfully designing a complex assessment
remains a formidable task. Without one, though, it is almost impossible.
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